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1. Introduction

This preliminary report is concerned with an approximate
descrip:;ion of the two dimensional vortical motion in a thin
spherical layer of a gravitating, incompressible, inviscid fluid.
We suppose that the fluid is contained between an inner rigid
ball and an outer rigid concentric sphere and that the fluid,
along with the inner spherical surface, has been rotating with
constant angular velocity w about a polar axis until a reference
time t = O. Thereafter we suppose that the motion is due to the
gravitational attraction of the rotating ball and to the sudden
creation at t = 0 of concentrated vortices with axis normal to
the spheres.

The general objective is to discuss the subsequent motion
of these isolated vortices, including the case for which w = O.
However, in this report we confine the discussion primarily to
the motion of a single concentrated vortex in the northern hemi-
sphere when certain equatorial boundary conditions are imposed.
The differential equations for the motion of such a vortex appear
below; and they are followed by an approximate description of its

geometric path for a period of time of such duration that it is

not necessary to use a computer for the numerical integration of

the equations.

There are many physical phenomena which are related to the
motion of vortices in a rotating fluid; and the analysis of this
kind of motion poses various inherently interesting mathematical

problems. Here, the investigation was undertaken with the hope




that the results could be used to approximate roughly the path

of a hurricane generated in the northern hemisphere.

2. Formulation

Let a and ath be the radii of two rigid concentric spheres
which contain 2 spherical layer of fluid. Suppose that © & O L&
small compared with a; and that the inner spnere rotates about
i1ts polar axis with constant angular velocity w. Let the motion
of the fluid be referred to the inner sphere. Iet p denote the
distance of a fluid particle from the center of the sphere while
$ and 6 respectively denote its longitude and colatitude. In
terms of these coordinates the velocity of a particle relative

to the inner rotating sphere is defined by the components

It
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tangential component toward the east;

(p siné) %%
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If the only body force acting is that due to the graviia-

tangential component toward the north;

radial component.

tional attraction of the solid ball defined by the inner sphere,
then the basic hydrodynamical equations which define the motion

of the fluid are the continuity equation
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and the momentum equations
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In these equations the differential operator with respect to the

time means

A u S . T
T "o snvSf p W 3p
The symbol 60 denotes the constant density of the fluid; p denotes
the pressure; and gp denotes the gravitational potential modified
Wy the cemtrifugal affect of rotations
8ince h is small compared with the large radius a of the

inner sohere; and since

w(d,0,ath,t) = w(d,0,a,t) =0

let us assume that the radial velocity and the radial variation

of u and v can be neglected. L¢% us also assume that the moticn
is such that the nonlinear terms in the tangential momentum equa-
tions can be neglected; and that the radial momentum equation can

be replaced with the hydrostatic law
p(fb,ﬂ,f):t) F p(djy(j,a:t)" FF‘O(p-a) .

Under these assumptions which characterize the linear shallow

water theory; and with the notation
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U(h,60,t) = u(h,8,a,t) ,

'\\;(‘bxeyt) V(¢:9:a:t) ’

5(¢),9:t) &= p(cb,@,a,t) ’

an approximation to the motion is determined by the equations

M d(Y sin 6)

(2.1) S5 s—t -0

du ~ ~ 1 3
(2:2) 3T - 2wV cos 6 = - 5 E s Th 37
OV ~ _ 1 P
(2.3) E‘E + 20U cos 8 = 6_03. m— -

The elimination of P from (2.2) and (2.3) and the use of

(2.1) leads to the equation

d 1 3(U sin 6) , V] , 2wV sin 6 _
(2.4) ot a sin © [ o0 i S$] - a =0.

It should be remarked that the quantity

P | 3(U sin 6) -1
R of §$

is the radial component of vorticity when radial variations are

neglected. An integration of (2.4) yields

" ©
V%

(2.5)

1 dU £in 6
a sin 6

- ® §$] 5 %?L/- V sin 0 dr = E(&,G,O)
0




where E(da,e,o) represents the vorticity prevalent in the fluid
layer at time t = O.

The equations (2.1) and (2.5) are the basic ones for the
motion under consideration. They can be studied by introducing

the function $(¢,6,t) and sett.ng

: b ~ 1
(2.6) . (a sSin G)E%— u—aw y
g kL oY
(2.7) TR TEen T 08 ’

in this way (2.1) is automatically satisfied. Then if we sub-

stitute (2,6) and (2.7) in (2.5) we find z must satisfy

Y & ~
(2.8) S_,l_rll_g%[(sine)gg} +S_ii%.gd) +2wf % gr - 4% (4,6,0) .
0

The problem now is to find a function z which satisfies certain
prescribed conditions along the boundary of a domain B on the
reference sphere; and satisfies (2.8) at each point of D. Before
we consider this problem, however, let us discuss briefly the
simpler case in which the spheres are fixed and the contained

spherical layer of fluid is motionless until t = O.

3., The Case of no Rotation

If w = 0 the equation (2.8) becomes

Lo il r & 1. &% _ .o
(5nl> mg@' (51n 9) ET)-+ L—ln?g—a-:b-é- = a C(d’),o,O) .




It is interesting to observe that if we use the transformation,

(see Fig. 1),

z2 = rel¢ = (a tan %)el¢ = x+iy ,

then (3.1) can be reduced to the ordinary two dimensional poten-
tial equation. For example, suppose we wish to analvze the

motion of a concentrated vortex in the zonal layer defined by

@ <86 =<8
Dl & _

10 < ¢ <2r

-

on the reference sphere subjeet To the Fegquirfehent that wlong
the boundary the normal velocity v must be zero along 6 = a and
8 =B. If we use the above transformation the problem can be

reduced to solving

4 2
(3.2) O+ ¥ = v (x-x)6(y -y,
ox oy

for the annular domain

(ql = a tan

D : 7

L

N Q

with the boundary conditions

v(a;,4) = ¥(a6) = 0.

In equation (3.2) p represents the strength of the vortex; ©
gtands Tor the Dirhe deltd functions ahd X1s ¥y correspond to

the position of the vortex on the sphere.

6




It should be remarked that the annular domain D is a
steareographi¢c projeection of the zone B as Fig. 1 indicates.

The above observatiors suggest the possibility of de-
veloping a general theory for the motion cf concentrated vortices
on a fixed sphere. In the course of doing this the author found

that it is basically analogous to the Helmholtz-Kirchoff theory

for the planar motion of rectilinear vortices.

L4, Fundamental Solution. Concentrated Vortex on a Rotating

Sphere

Let us return now to the equation (2.8) which can be

written in the form

~ 2-\_,
(4.1) OV =g 3 (sino) &+ L 24
sin“6 3¢
t (2 V]
= aC'E(nb,e,O)-ewf gl{é dt .
0

This equation can be analyzed in several different ways. One way
is to introduce an appropriate Green's function and then present
the partial differential equation as an integral equation. The

Neumann expansion of the integral equation leads to

Teho Byt = T (60) + T 88§ p 6)
Vgl = (o] 4 -n—=j:—rT!— 3! ? *

¥

It can be shown that the function in this expansion must satisfy




Figure |




= a‘zrg(d’,e, O) ’

~ a ~ 1
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G
<
!

the transformation

and therefore, by virtue of

i

z = (a tan %)e ;

they can be determined by solving a sequence of ordinary poten-

tial problems.

Another way to solve (4.1) is to use transform theory based
~n finite Fourier transforms in conjunction with Legendre trans-

forms. This way seems most convenient for our immediate aim

which is to find the function z associated with the creation at

£t = O of a vortex of strength p concentrated at (¢l,91) where

O<61'<Trl

In other words, our first object is to solve

2
I i, @ PR - e +2f5Gd
(h.2)  srmoar 10 0) 3 Y % R ‘“O*g(gT

0<6 <7, 0xp

P A
n
5

that is, for the whole sphere excluding the south pole where

Q($,6,t) may be singular.

Let us assume that the behavior of G at the south pole 1is

such that



L

goy Sin 6 a($,6,t) =

: oG _
L =8 sin 6 3 - const,

Under these assumptions it is known that G can be expressed in

the form
Al6,%)
(14"3) G(‘b,e,t) =

A (t)cos md
(n-m)! -
+ ﬁg on+l) -(——)-,-mm y Plrnl(cos 0)

+Bnm(t)sin md

where the coefficients are the transforms

o
A, t) =f 6(a,6, t)da ;
0]
2T T
Anm(t) =f f G(a,B,t)cos ma Pmn(cos B)sinpB dRda ;
0O O
or
Bnm(t) =L/ Jf G(a,B, t)sin ma Pﬁ(cos B)sinB dRda .
0O O

The function Pﬁ(cos 0) is the associated Legendre spherical

harmonic of degree n and order m: It can be defined by

m
j (-1)™(sin G)m( cqs ) Pn(cos 2 m<n

Pg(oos o) =

A

O m>n

and 1t satisfies

T e p———



—-—l—g-d-g(snle a?-gprgcose

2
+ [n(n*l) - —_ln-ga]#g(cos 9)
sin

Notice that no previous condition on G is affected 1f we change

I
o

G by a constant.
The transform A(9,t) must be continuous at 0 = 31 and

satisfy

ga@' (sin 6) %’lg = ub(6 -bl) .

Since A(6,t) must be bounded at 6 = 0, the solution of the last

equation, excepting an additive constant, is uniquely given by

61
(uzntan-7', O:Fl,

(4.4) A(6) = ;

6
_H Zntan§ . 01_<_(' 5

This function can be expanded in che form

=
U
fo =3
D
]

where Pn( ) = P°( ).

The transforms Anm(t) and Bnm(t) must satisfy

t
-n(n+l)Anm(t)+2mJ Bnm("r)d"r =L cOS m(bloprg(cos 01) .
0




-n(nfl)B - me‘/ (t)dt = o sin m¢l (cos 6

and these yield

qu(cos el) ot
A (8) = - —Zqrry— cos m [‘h - F(n_(ff)'] ’
(4.6)
WP (cos Gl) . .
Bnm(t) - nn(n+1) e [¢l I ?1-(?%1—7] .

The substitution of these transforms in (4.3) gives

A(e)

(u"?) G(¢>,9,t) * 00 (2 +l
n
%rg n( n+17; n+m)—r n( 0 el)Prrnl(COSQ)

. cos m [¢'¢1+mr21%;7] .

Next, the addition theorem

(4.8) Pn[cos 6 cos €, *+sin 6 sin 6, cos ]

Pn(cos G)Pn(cos 91)

¥ E TE?ETT (cos Gl)PE(cos 6)cos mA

shows that we can write

12




A(6)

n il
o in cos -5

I
! . [ cos @ cog Gl
Pn )
. ; i 20
» . L+51n951nelcos(d>- <bl+m)
WL (2n#l) |
- EF’%;: n{n+1)
—Pn(cos el)Pn(cos 0) )

Hence, from (4.5), we see that G($,6,t) can be exhibited in the

! form

(4.10) G(d,6,t) = -
cos 6 cos el

P
n
; 2wt
+sin 6 sin 6, cos(¢ - ¢, + =)
L < (2ntl) ! R
T HF'%;; n{n+l)

_(_1)nPn(cos 6)

Finally, by using

(1+x)
2

2n+1
giﬁi]% ('l)npn

(4.11) .

s

we f{ind that

(4.12) G(¢,6,t)

cos 0 cos 91

i
- 9 = nnFL) Pn . , 2wt
+51n681nelcos(¢' ¢1+n1n+l ’)
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The reason for retaining the constant §+ Zn cos 'gl is that when

1

we do
G(4,0,t) = G(,6,t54,,6,)

is symmetric in @ and 61.
Except for (rbl,el) and the south pole, the velocity compo-
nents are given by

1 3G . N~ i oG
a oo V“asin@'a};‘

~
u =

The velocity field in the neighborhood of the concentrated vortex
can be estimated by studying the first term of the expansion of

G($,6,t) in powers of wt, namely

91 o)
- Z%;[l+2£ncos T+22ncos 5:]
(4']-3) Go(¢’e,t) =

cns B cos 91

®
(L (2n+1)
o EFE nin+i) P

+5in 6 sin 6, cos(¢ - ¢)l)'

6

y & | 1 2 0
f—l-zn cos® == - fn cos® »
b I
2 l-cosBcos, -sin6 sin6, cos(d-¢.)] /

0 6
2 6
=11—L;r £n [tan g+ tang?l-Ztangtaxl?l cos(cb-d)l)J .

This gives the dominant part of the velocity of a point near

(d>l,el). It corresponds to the case of no rotation; and if we

transform to the z-plane introduced above via




we have

:
|
' &k Be g (T =T
!

(4e1d) G, = ﬁ? §m (3 -zl)(E-El)— ﬁ% in a !

l)— g; fn a

where z; 1is the image of (¢1,91) and Re F(z) denntes the real
part o1 ¥(z). The velocity components determined by G  can be

calculated from

R | 3G, N u(a2+-zE) z .
i * 3.8 ok 3
Mva?/zz ¥
¥ I oG _ u(a2+-zE) Re L2
o mein 0 ad o0y
¢ lhra%/ii L

These show that as z = 2, the velocity approaches infinity; but
ti.e component in the direction frem z to Zq is zero. Therefore in

the neighborhood of (bl,Gl) the fluid rotates about the vortex

P . L ;

poiEt Wit Yelogiky of the order of . Prom this, it can be
|z- zl| ¢

deduced that the velocity field defined by G in the neighborhood

of (¢1,61) behaves qualitatively in the same way as the field

defined by GO. In other words, the concentrated vortex at (¢1,61)

nas no tendency to move — it is not self propelling.

Notice that if the vortex is at the north pole, i.€e.,




G(lt':oy t;‘blyo)

This function is such that

4 : e
Lgog blneGe(cb,G,t, cbl,o) =g

5« Concentrated Vortex in Northern Hemisphere. Either Velocity

Component Zero at the Equator

We proceed to find the stream function for a concentrated
vortex traveling in the nortliernn hemisphere and subject to the
eopdition that the Dorial veloeity of the fluid at the equator is

zero. The boundary condition then is

'{;(d’:%:t) & E—S%'n—-g'?};(b(i’:%:t) =0
or

However, we know that nothing is lost if we impose

The stream function for this case can be formed from
G(¢,9,t;¢l,91) if we assume that the principle of reflection
across the equator will lead toward the desired result. In fact,

i% 18 edsy to verify that

(5.1) ¥ o= G(d,6,t581,0,)-G(d,6,t5¢,m-6,)

16




is the desired function. We refrain from a discussion of the

velocity field defined by (5.1) in favor of the next case in

wiich the eastward velocity

~

d
6

o]

~
m =

1s prescribed at the equator.
We turn to the problem of finding ¥ such that with the

boundary condition

5 i
1 d . ;Y i QY

F.E = S 9 I = 2 dT
OF) T e = ‘“{"cﬁa

is satisfied for

If we assume that

3o

(5.3) Lg,o in 6y, =

a1 integration of (5.2) over the northern hemisphere yields

2m

(5'}4) f ¢6(¢: %:t)dd’:U«'i'Uoo .
0

This shows tha. the prescription of w9(¢,%utﬂ must satisfy the

compatability condition (5.4). If we wish to satisfy

1§




then we must have

2TT8.C-|J, [
As we have seen, the condition (5.3) is satisfied by

o o 6
T G(‘b:Q’t;djl:o) > ?TF in tanE .

Consider the function

W 2]
@]
B 40 tab z

(5.5) v($,6,t) =

+G(¢)’9’ t;(bl’el) +G(‘b’9: ts(bl,ﬂ' = 61) o
A short computation shows that
V(s 7

Hence (5.5) satisfies the boundary condition that the eastward

velocity at the equator is constant and equal to c if

el = 2mac - .

We have now shown that

(2rac =) 2]
s . Y

(5-6) d’(‘b,e:t) =

+G(4, 6, t501,0,) +G(4,0,t54,,m-6,)

is the desired stream function.,
Let us turn our attention to & study of the path of the

vortex at [¢1(t),01(t)]. As in the basic Helmholtz theory for




the motion of interacting concentrated vortices, the velocity of
the ~vortex at [¢1(t),61(t)] is equal to the field velocity deter-
mined at [¢l,61] by all of the other vortices. That is, the

equations for the motion of the vortex are

(2”a¢-El In tan ¢
. 2." ?
b =
1 ;?sin 6
1 +G (6, t54,,m=6,)] | b=
and 6=9l
[} l a [
6 il = G(‘b eyt'\'b T-6 )J . o
- a sin 6..55 ’ ATL? 1 ¢—¢l
- 6=6
1
In expanded form these are
s dé i
1 dt Cr a2 8]
2rra - sin 61 8wa2 c052 7%
-cos 6
_ W08 by @ (ony1) o i
i 2 - n{n+ n ; :
4mra na=il +cin26 B i 2wt
- 1 nin+l)
St
. l_l+cos AT ] ;
and
F 2
: -¢cos“6
(5.8) 8, = ok o o L2001 6@ (entl) 1
1 d Lo, s nin+I$ n o S

19




It seems that numerical integration is necessary in order

to trace the path of the vortex for moderately large or large
values of wt. Our intention is to pursue this in a later report;
however, as a preliminary step, we can assume that wt is so small
that a sufficiently good approximation to the path can be found
by expanding $l and él in powers of wt and retaining those of
degree no higher than the second. 1[n addition let us suppose
hereafter that ¢ = 0,

If each term in (5.7) and (5.8) is expanded in powers of

wt; and if we retain powers no higher than the second we find

(5.9) &, = - - + =
il Dnii 2]
2ra” sin 61 8va2 COSE 7}
/[ PA(-cos 20,) ;
i L COS 61 0] (2n+1) k ' k
2va2 —— n{n+ s (wt)2 Pn(-cos 291) (
PT SRR e
B fmed) wlRe. s 00 ek
t2sin 6, Pn( couzel)
and
wlwt)sin 6, oo
. i (en+l) ¢
(Bal0) & = = :I_ T2l pl(_cos 20.) .
1 2va2 e nintl) "n 1

The series which appear in the last equations can be summed and

they lead to

(5.11) $, = - =
v 4va2(1--cos Gl)cos 6

3




pwt fn cos Gl
(5012) 6 3 .

1 e — o
2ra /1 - cos Gl

In order to express ¢l and él in powers of t eXplicitly we need
to expand cos Gl in powers of t and insert the expansion in
(5.11) and (5.12). 1If we do this and retain only powers of t

less than the third we tind

————g \
§ ain® -
: ® |
o L
(5.13) ¢l = "1?—'__7;' r cos 6 3 1
ma“ cos 6 © 45 btn .
A
+(wt)2

0 JIEAUN
" w(l-2 cos Go)zn cos 60
8 a2w sinu BO cos 6
L » T o
7

wwt In cos 90

2na2 sin 60

(5.14) él -

where 60 is the colatitude of the initial position of the vortex.

The approximate equations (5.13) and (5.14) show the
following if u, the strength of the vortex, is positive; and 60
is greater than 7/3. When wt is very small the vortex moves
along a path which is almost parabolic. Since -aél is the vel-
ocity to the north, equation (5.14) shows that the rate of change
of latitude is zero at t = 0 and the latitude increases as t

increases. Equation (5.13) shows that the vortex starts with a

westward motion but after a whilc the positive term




2 - S 2l q 1
i w(wt) 0 %3 I g 4 wi(l= 2 co Go)gn cos 6
vdgicos 6 Tan \ o 4 Y
o 0 8ra w sin 7; cos @
o}

becomes dominant and the vortex then moves to the east. The

following figure shows a qualitative sketch of the path.

Figure 2

This sketch exhibits some of the characteristics ¢f the observed
paths of hurricanes generated in the Caribbean sea or some other

southern part of the North Atlantic ocean.



